Категории: Все - теорема - мощность - независимость

по Хадижа Джиблави 1 года назад

147

Теорема о существовании базиса антисимметричных полилинейных форм

В математике отображение представляет собой соответствие между элементами двух множеств. Важной концепцией является образ элемента, который представляет собой множество всех элементов, соответствующих данному элементу.

Теорема о существовании базиса антисимметричных полилинейных форм

Отображение - это соответствие между элементами множеств х и у.

Множество всех элементов у∈В, соответствующих элементу х∈А называется образом элемента х.

Теорема о существовании базиса антисимметричных полилинейных форм

Антисимметричные полилинейные формы

Пусть W ∈ Ωp0 , тогда V (x 1 , x 2 , . . . , x p ) =1/p!· Σσ(−1)[σ] W (x σ(1) , x σ(2) , . . . , xσ(p) )-антисимметричная ПЛФ из Λ p(K). Пусть χ ∈ S n - произвольная перестановка тогда V(x χ(1), x χ(2) , . . . , x χ(p) ) =1/p!·∑σ(−1)[σ] · W(x σ◦χ(1) , x σ◦χ(2) , . . . , x σ◦χ(p) ) =1/p!·∑φ◦χ−1(−1)[φ◦χ−1] · W(x φ(1) , xφ(2) , . . . , x φ(p) ) = (−1)[χ−1] ·1/p!·∑φ(−1)[φ] W(x φ(1) , x φ(2) , . . . , x φ(p) ) = (−1) [χ] · V (x 1 , x 2 , . . . , x p ) Операция изготовления антисимметричной ПЛФ V из произвольной ПЛФ W называется операцией антисимметризации формы W. Для нее пишут V = Asym W
процесс антисимметризации
Полилинейная форма V ∈ Ωp0 (K) называется антисимметричной, если она меняет знак при транспозиции любых двух ее аргументов или V (x 1 , x 2 , . . . , x p ) = (−1)[σ] V (x σ(1) , x σ(2) , . . . , x σ(p) ), σ ∈ S n .
Транспозиция - это перестановка, при которой переставляются местами только два элемента множества.

Перестановкой на множестве элементов называется биекция множества {1,2,3,4...n} на себя.

Биекция - это отображение, которое является одновременно и сюръективным , и инъективным

Сюръекция - это отображение множества х на множество у, при котором каждый элемент множества у является образом хотя бы одного элемента множества х.

Инъекция - это отображение множества х в множество у, при котором разные элементы множества х переводятся в разные элементы множества у.

Полилинейной формой векторных аргументов называется числовая функция, определенная на всевозможных векторах линейного пространства и линейная по каждому из аргументов, при фиксированных значениях остальных аргументов

Линейная форма - это линейное отображение векторного пространства в его поле скаляров (часто вещественных чисел или комплексных чисел)

Для того, чтобы ПЛФ была антисимметричной необходимо и достаточно, чтобы она обращалась в ноль при совпадении любых двух ее аргументов: V ∈ Λp(K) ⇔ V (x 1 , . . . , x i , . . . , x i , . . . , x p ) = 0.
полилинейные формы

Линейное пространство

свойства элементов в нём
Ассоциативность

α(βx) = (αβ)x = β(αx)

Существование единицы по умножению

∃1 ∈ K : 1 · x = x

∀x, y, z ∈ R: x · (y + z) = xy + xz

определение
Линейным пространством X над полем K называется модуль над кольцом, имеющим также алгебраическую структуру поля

Полем называется ненулевое кольцо, в котором каждый ненулевой элемент обратим

Модулем над кольцом R называется абелева группа (G, +) с заданной бинарной операцией R × G → G, записываемой как (α, x) → αx и согласованной действующей на групповой структуре на G

Абелева группа - группа, в которой операция является коммутативной a*b=b*a

Группа - это множество если закон композиции, заданный на множестве удовлетворяет следующим аксиомам:

существование нейтрального элемента

e ◦ x = x

для каждого элемента существует обратный

z ◦ x = e, где z - это обратный, а e - нейтральный

ассоциативность закона

Кольцом R называется множество замкнутое относительно двух согласованно заданных на нем бинарных операций, удовлетворяющих следующим аксиомам

аксиомы:

Существование единицы

∃ 1 ∈ R : 1 · x = x = x · 1

Коммутативность

∀x, y ∈ R x · y = y · x

Дистрибутивность

∀x, y, z ∈ R: x · (y + z) = xy + xz

Существование нуля

∀x ∈ R ∃ 0 ∈ R : x + 0 = x = 0 + x

Асоциативность умножения

∀x, y, z ∈ R (xy)z = x(yz)

Существование противоположного

∀x ∈ R ∃ (−x) : x + (−1) = 0 = (−x) + x

Ассоциативность сложения

∀x, y, z ∈ R (x + y) + z = x + (y + z)

Согласованное действие:

∀α ∈ R, ∀x1, x2 ∈ G α(x1 + x2) = αx1 + αx2

Действие кольца в группе

∀α, β ∈ R, ∀x ∈ G (α + β)x = αx + βx, (αβ)x = α(βx)

Базис

Леммы и теоремы
Размерностью линейного пространства X(k) называется мощность его базиса.

Мощность - характеристика множеств (в том числе бесконечных), обобщающая понятие количества (числа) элементов конечного множества

В любом конечномерном пространстве существует базис.
Свойства
Разложение векторов по базису

Пусть {ei}n i=1 - базис линейного пространства X. Тогда ∃ {ξi ∈ K}ni=1 : x = Σni=1 ξiei ∀x ∈ X. Набор чисел {ξi}ni=1 называется координатами вектора x в базисе {ei}ni=1.

Линейная независимость

Набор векторов {xi}ni=1 называется линейнонезависимым (ЛНЗ), если: α1x1 + α2x2 + . . . + αnxn = 0. имеет место только тогда, когда α1 = α2 = . . . = αn = 0.

Полнота

Набор векторов {xi}mi=1 называется полным в линейном пространстве X(k), если выполняется следующее условие: ∀x ∈ X ∃α1. . . αn: x = Σni=1 αixi

Определение
Базисом в линейном пространстве X(k) называется полный ЛНЗ набор.

Формулировка

Пространство Λ p (K) является подпространством Ωp0(K), базис которого формирует набор ПЛФ { s1,s2,...,sp W} такие что s1,s2,...,sp W (x 1 , x 2 , . . . , x p ) = ξs1 1 ξs22. . .ξspp. Опишем этот базис: Построим систему антисимметричных ПЛФ { s1,s2,...,sp F}, следующим образом: s1,s2,...,sp F = p! Asym ( s1,s2,...,sp W) . Убедимся прямой проверкой, что эти ПЛФ обладают свойством антисимметричности по индексам (s 1 , s 2 , . . . , s p ). s1,...,si,...,sj ,...,sp F (x 1 , . . . , x i , . . . x j , . . . , x p ) = s1,...,sj ,...,si,...,sp F (x 1 , . . . , x j , . . . x i , . . . , x p ) = = − s1,...,sj ,...,si,...,sp F (x 1 , . . . , x i , . . . x j , . . . , x p ) . Этот набор образует базис в пространстве Λ p (K), так как он полон и линейно независим.
Набор - конечная и упорядоченная совокупность его элементов