RULES OF DIFFERENTIATION
The document explains various rules of differentiation used in calculus. It covers the Quotient Rule, which is applied when differentiating a function that is the ratio of two other functions.
Megnyitás
RULES OF DIFFERENTIATION PECAHAN
6. Product Rule =u dv/dx + v du/dx y'=uv'+vu' If y=h(x)×g(x) 4. Sum Rule f'(x)=3x^2+3 Example : f(x)=x^3+3x f'(x)=h'(x)+-g'(x) If f(x)=h(x)+-g(x) 3. Power Rule f(x)=8x^3 f'(x)=2(4)x^4-1 f(x)=2x^4 f(x)=15^2 f'(x)=5(3)x^3-1 Example : f(x)=5x^3 y'=f'(x)=nx^n-1 If y=f(x)=x^n SYED MUHAMMAD ZUBAIR BIN SYED SHAHAZAM (052947) MSD 10503 DII 7. Quotient/ Rational Rule y'=dy/dx=vu'-uv'/v^2 let h(x)=u, g(x)=v If y=h(x)/g(x) 5. Chain Rule f'(x)=n(ax-+b)^n-1(ax-+b)' If f(x)=(ax-+b)^n 2. Constant-Multiple Rule f'(x)=-3 f'(x)=5 f'(x)=dy/dx=m if f(x)=mx Where m is any constant 1. Constant Function/Rule if f(x)=-7 f'(x)=0 Example : 1. if f(x)=4 dy/dx=f'(x)=0 if y = f(x)=c where C is any constant